×

Вы используете устаревший браузер Internet Explorer. Некоторые функции сайта им не поддерживаются.

Рекомендуем установить один из следующих браузеров: Firefox, Opera или Chrome.

Контактная информация

+7-863-218-40-00 доб.200-80
ivdon3@bk.ru

Анализ глубоких нейронных сетей для обнаружения человека на земле с высоты полета квадрокоптера

Аннотация

Ахметзянова Р.Р., Андреянов Н.В.

Дата поступления статьи: 13.07.2025

В современном мире, когда технологии развиваются с невероятной скоростью, компьютеры обрели способность «видеть» и воспринимать окружающий мир подобно человеку. Это привело к революции в анализе и обработке визуальных данных. Одним из ключевых достижений стало применение компьютерного зрения для поиска объектов на фотографиях и видео. Благодаря этим технологиям можно не только находить такие объекты как люди, автомобили или животные, но и точно указывать их положение с помощью ограничивающих рамок или масок для сегментации. В данной статье подробно рассматриваются современные модели глубоких нейронных сетей, применяемые для детекции человека на изображениях и видео, снятых с высоты и большого расстояния на сложном фоне. Анализируются архитектуры Faster Region-based Convolutional Neural Network (Faster R-CNN), Mask Region-based Convolutional Neural Network (Mask R-CNN), Single Shot Detector (SSD) и You Only Look Once (YOLO), сравниваются их точность, скорость и способность эффективно выявлять объекты в условиях неоднородного фона. Особое внимание уделено изучению особенностей каждой модели в конкретных практических ситуациях, где важны и высокое качество обнаружения целевых объектов, и скорость обработки изображений.

Ключевые слова: машинное обучение, искусственный интеллект, глубокое обучение, сверточные нейронные сети, детекция человека, компьютерное зрение, обнаружение объектов, обработка изображений

1.2.2 - Математическое моделирование, численные методы и комплексы программ

2.3.1 - Системный анализ, управление и обработка информации

.