Способ калибровки цифровой модели ламинарно-турбулентного перехода свободноконвективных потоков стальных панельных радиаторов

С.А. Тихомиров

Национальный исследовательский Московский государственный строительный университет, Москва

Аннотация: Моделирование свободной конвекции от стальных панельных радиаторов представляет серьезную научно-техническую задачу. При нагреве вертикальной поверхности радиатора формируется граничный слой теплого воздуха, поднимающийся вдоль стенки. В нижней части потока движение обычно ламинарное, однако по мере развития пограничного слоя он может становиться неустойчивым и переходить в турбулентный режим. На условия перехода помимо температурного напора влияет геометрия отопительного прибора. Высота, количество панелей, наличие вертикальных оребряющих элементов отражается на формировании конвективных потоков, а правильная геометрия способствует раннему ламинарно-турбулентному переходу и более интенсивной конвекции. Обычно теплоотдачу определяют при помощи критериальных уравнений и для вертикальных поверхностей критическим условием перехода служит число Грасгофа порядка 10^9 , что соответствует температурному напору около 70 °C на высоте порядка 0,5-1 м. В реальных условиях эксплуатации панельного радиатора поток воздуха в нижней зоне радиатора остается ламинарным, а выше по высоте переходит в турбулентный режим, определить точные параметры перехода используя НО представляется критериальные зависимости не возможным. Предложенная исследовании CFD-симуляция процесса перехода подвергалась калибровке способом, основанным на данных лабораторных испытаний, проведенных по методике ГОСТ Р 53583-2009 для повышения достоверности полученных расчетных данных.

Ключевые слова: отопительные приборы, свободная конвекция, свободное движение потока воздуха, эффективность теплоотдачи, ламинарно-турбулентный переход.

Моделирование процесса перехода к турбулентности представляет собой достаточно трудную задачу [1]. Для численного моделирования свободноконвективных потоков используется решение уравнений Навье-Стокса в приближении Буссинеска и уравнения теплопереноса [2, 3]. В расчётной модели помещения (классическая задаются геометрия испытательная камера по ГОСТ – закрытая изотермическая комната размером порядка $3.4 \times 3.4 \times 2.8$ м) и сам радиатор (панели типов 10, 20, 21) с его конструктивными размерами. Формулируются граничные условия: придаются фиксированные температуры (c стенам камеры учетом

охлаждения по стандарту), стенке с радиатором задается источник тепла, соответствующий тепловому потоку радиатора. В таком виде решение задачи возможно с учетом совместного влияния конвекции и излучения [4-6], с различными моделями турбулентности [7] и расчетом границы пограничного слоя [8-10]. В отличие от обычной постановки по паспортным данным, здесь устанавливается величина теплового потока, полученная по результатам лабораторных испытаний [11]. Расчёт ведётся методом конечных объёмов (или конечных элементов) с учётом конвективного и лучистого теплообмена. При необходимости используются модели турбулентности (например, k-є SST), необходимо или k–ω однако отметить, что стандартные полуэмпирические модели без дополнительных возбуждений зачастую не воспроизводят однозначно ламинарно-турбулентный переход при свободной конвекции [12, 13]. Например, в к-ю SST-подходе переход не выражен ярко, а у модели k-є положение перехода чувствительно к сетке и настройкам Для настройки модели используются алгоритма. следующие характеризующие алгоритм калибровки. В первую очередь выполняется построение геометрии и сетки. Создается модель камеры и радиатора (импорт из САД-систем), генерируется расчётная сетка с возможностью адаптации в областях резких градиентов.

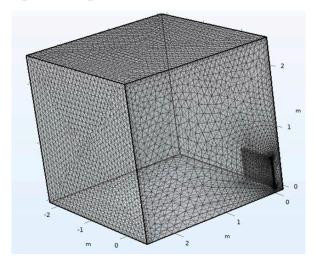


Рис. 1. – Создание модели камеры и радиатора, построение расчетной сетки

В процессе создания модели определена ось симметрии камеры для снижения времени выполнения расчетов и нагрузки на вычислительные мощности.

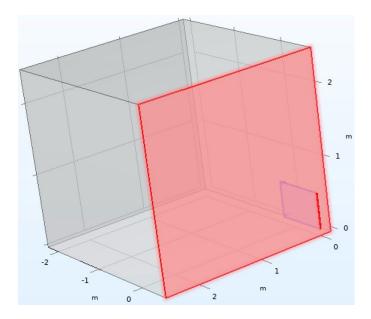


Рис. 2. – Ось симметрии модели камеры и радиатора

Увеличение количества узлов сетки выполнялось при приближении к границе воздух - отопительный прибор.

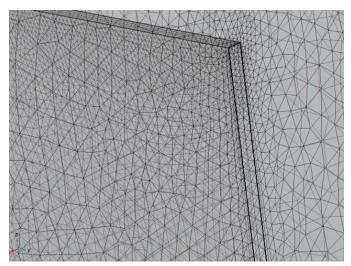


Рис. 3. – Увеличение количества узлов сетки около поверхности радиатора

На втором этапе выполняется задание граничных условий. На внутренних поверхностях стен камеры задаются температуры, обеспечивающие статичные условия эксперимента (в соответствии с ГОСТ Р 53583-2009). На поверхности радиатора задается поток тепла (отопительный

прибор тепловой источник). моделируется Затем как выполняется калибровка теплового Значение теплового потока потока. радиатора выбирается так, чтобы интегральный выход тепла по модели совпал с измеренным в лаборатории, и, вместо паспортного значения, вводится скорректированное экспериментальное значение тепловой мощности. После этого проводится верификация расчёта. Результаты симуляции сравнивают с экспериментальными данными по суммарному тепловыделению и имеющимся измерениям температуры воздуха в характерных валидации модели. При необходимости итеративно помещения ДЛЯ корректируются параметры расчета, такие как свойства воздуха, плотность, коэффициенты излучения, а затем и параметры сетки.

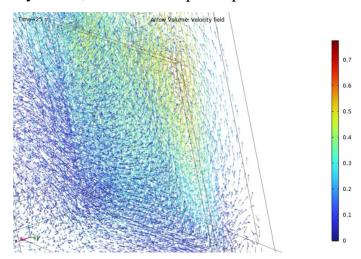


Рис. 4. – Скорости воздуха в зоне поверхности панели радиатора

Такой алгоритм позволяет параметризовать модель по геометрии радиатора, его материалам и условиям, а точность интегрального результата обеспечивается прямой подстройкой под эксперимент. Аналогичный подход показывал хорошее согласие с экспериментом. Например, [14] в своей СГО-модели подтвердили, что численные данные согласуются с экспериментальными результатами, а на других объектах верификация по натурным данным давала удовлетворительное совпадение.

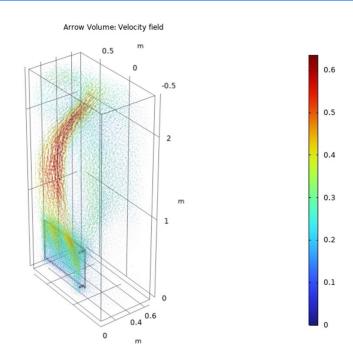


Рис. 5. – Оценка влияния геометрии панели радиатора на распределение скоростей движения воздуха в камере

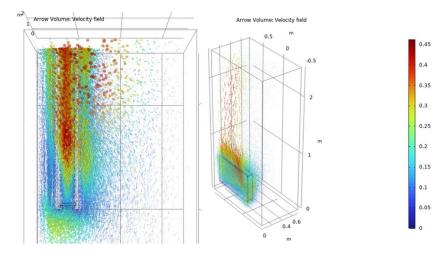


Рис. 6. – Учет влияния числа панелей радиатора и расстояния между ними на распределение скоростей движения воздуха в камере

Расчёт с откалиброванным (по лабораторным данным) значением теплового потока радиатора дал физически правдоподобные поля температуры и скорости воздуха. В моделируемом объёме отчётливо выделяется ламинарный пограничный слой у нижних участков радиатора и зона перехода по высоте панели, как ожидается по классической теории свободной конвекции. Интегральная тепловая мощность, рассчитанная по

балансу энергии, совпадает с заданной (измеренной) величиной потока. Это подтверждает адекватность модели: сопоставление полученных расчётных данных с экспериментальными измерениями показало хорошее совпадение. Например, в [15] аналогичный СFD-подход для свободной конвекции у горизонтальных круглоребристых труб и пучков из них дал удовлетворительное совпадение расчётов с натурными экспериментами и с лабораторно измеренными характеристиками.

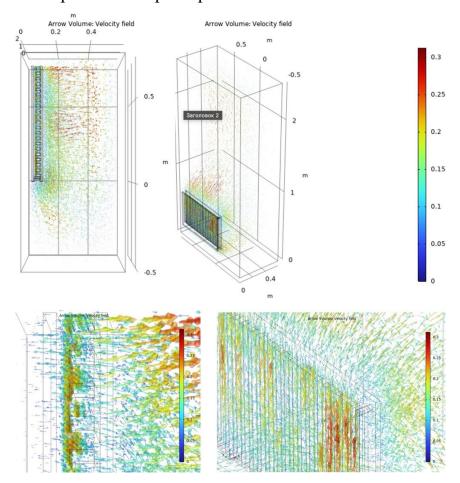


Рис. 7. – Учет влияния вертикального оребрения панелей радиатора и расстояния между ними на распределение скоростей движения воздуха в камере

Калиброванная численная модель обеспечивает высокую точность предсказания интегральных характеристик тепловыделения. Использование CFD позволяет заранее изучить поведение радиатора без изготовления

прототипов, варьируя его геометрию и теплотехнические свойства. Модель легко параметризуется по размерам панелей, наличию оребрения, физическим свойствам материалов и среды, что обеспечивает повторяемость расчётов при разных конфигурациях.

Стоит отметить, что в традиционных лабораторных методиках измеряется лишь суммарная тепловая мощность радиатора, но не даются распределения температуры и скорости воздуха в пространстве. Это означает, что цифровую модель нельзя полноценно верифицировать по локальным полям, а лишь по интегральному выходу. Кроме того, использование подгонки к конкретным экспериментальным данным может привести к «переадаптации» модели под одну точку испытания, снижая её универсальность. Существующие критериальные зависимости перехода, полученные экспериментально, могут существенно отличаться друг от друга и не являются универсальными, поэтому калибровать модель следует с учётом этих разбросов. Так, положение ламинарно-турбулентного перехода сильно зависит от выбора численных схем, турбулентной модели и параметров сетки. Выбор параметров для настройки (помимо теплового потока это могут быть свойства воздуха, настройки турбулентности, проводиться обоснованно, разрешение сетки) должен анализом чувствительности, чтобы минимизировать неопределённость.

Выводы

Предложенный метод калибровки цифровой модели свободной конвекции радиатора (установкой в расчёте реального лабораторного теплового потока) позволяет добиться высокой точности расчёта интегральных характеристик радиатора и улучшить согласие модели с реальными данными. Такой подход обеспечивает повторяемость вычислений и гибкость моделирования различных конструкций (размеров панелей, оребрения, материалов). Вместе с тем, он требует тщательной валидации:

отсутствие экспериментальных полей температуры и скорости затрудняет проверку правильности детализации модели, а подгонка к одним данным может «перекалибровать» Описанный модель. подход целесообразен при переходе к цифровой сертификации отопительных приборов, поскольку часть позволяет заменять экспериментальных испытаний численными сопоставимой точностью интегральных показателей.

Литература

- Бойко А.В., Кириловский С.В., Маслов А.А., Поплавская Т.В. Инженерное моделирование ламинарно-турбулентного перехода: достижения и проблемы (обзор) // Прикладная механика и техническая физика. 2015. Т. 56, № 5(333). С. 30-49. DOI 10.15372/PMTF20150503.
- Машенков А.Н., Косолапов Е.А., Чебурканова Е.В. Общая система уравнений Буссинеска для одномерной свободной конвекции в плоском вертикальном слое // Приволжский научный журнал. 2012. № 2(22). С. 93-98.
- 3. Денисихина Д.М. Конвективно-радиационный теплообмен человека в задачах математического моделирования распределенных параметров микроклимата в помещениях // Вестник Волгоградского государственного архитектурно-строительного университета. Серия: Строительство и архитектура. 2014. № 38(57). С. 143-150.
- 4. Cess R.D. The effect of radiation upon forced-convection heat transfer // Appl. Scient. Res. A. 1961. v.10. №6. pp. 430 438.
- Дунин И.Л., Иванов В.В. Сопряженная задача теплообмена с учетом излучения поверхности // Изв. АН СССР. Механика жидкости и газа. 1974. №4. С. 187 – 190.

- Иванов В.В., Карасева Л.В. Сопряженный теплообмен в пластине с излучающими наружными поверхностями // Изв. вузов. Сев-Кавк. Регион. Техн. Науки. 2015. № 1. С. 65 – 68.
- 7. Денисихина Д.М., Иванова Ю.В., Мокров В.В. Численное моделирование истечения из современных воздухораспределительных устройств // Инженерный вестник Дона. 2018, № 2. URL: ivdon.ru/uploads/article/pdf/IVD_183_denisikhina_ivanova_mokrov.pdf_eb27 152529.pdf
- 8. Иванов В.В., Карасева Л.В., Тихомиров С.А., Пономаренко А.С. Теплообмен в пограничных слоях на излучающих поверхностях // Инженерный вестник Дона, 2017, №2 URL: ivdon.ru/ru/magazine/archive/N2y2017/4188/.
- 9. Sparrow E.M., Lin S.H. Boundary layers with prescribed heat flux application to simultaneous and radiation // International J. Heat Mass Transfer. 1965, v.202, №1070. pp. 437–448.
- 10. Chambre P.L., Acrivos A. On chemical surface reactions in laminar boundary layer flows. J.Appl. Phys., 1956, v.27, № 11. pp. 1322 1328.
- 11. Саргсян С.В. Исследование способов организации воздухообмена и систем воздухораспределения на физических моделях в лабораторных условиях // Научное обозрение. 2015. № 16. С. 68-71.
- 12. Чумаков Ю.С., Храпунов Е.Ф., Малых А.Д. Экспериментальное исследование влияния крупномасштабных возмущений на ламинарнотурбулентный переход в свободноконвективном слое на вертикальной поверхности // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-108-118. 2020. Τ. 13, $N_{\underline{0}}$ 3. C. DOI математические науки. 10.18721/JPM.13308.

- 13. Абрамкина Д.В. Моделирование свободноконвективных течений в системах вентиляции с тепловым побуждением // Вестник Дагестанского государственного технического университета. Технические науки. 2017. Т. 44, № 3. С. 136-145. DOI 10.21822/2073-6185-2017-44-3-136-145.
- 14. Абрамкина Д.В., Абрамян А.А., Шевченко-Эннс Э.Р. Экспериментальное определение коэффициентов конвективной теплоотдачи в системе вентиляции с тепловым побуждением // Вестник Дагестанского государственного технического университета. Технические науки. 2018. Т. 45, № 4. С. 133-141. DOI 10.21822/2073-6185-2018-45-4-133-141.
- 15. Маршалова Г.С., Сухоцкий А.Б., Кунтыш В.Б. Свободно-конвективный теплообмен на круглоребристых трубах и пучках из них // Инженернофизический журнал. 2023. Т. 96, № 4. С. 1091-1105.

References

- Bojko A.V., Kirilovskij S.V., Maslov A.A., Poplavskaya T.V. Prikladnaya mexanika i texnicheskaya fizika. 2015. T. 56, № 5(333). pp. 30-49. DOI 10.15372/PMTF20150503.
- 2. Mashenkov A.N., Kosolapov E.A., Cheburkanova E.V. Privolzhskij nauchny'j zhurnal. 2012. № 2(22). pp. 93-98.
- 3. Denisixina D.M. Vestnik Volgogradskogo gosudarstvennogo arxitekturnostroitel`nogo universiteta. Seriya: Stroitel`stvo i arxitektura. 2014. № 38(57). pp. 143-150.
- 4. Cess R.D. Appl. Scient. Res. A. 1961. v.10. №6. pp. 430 438.
- 5. Ivanov V.V., Dunin I.L. Izvestiya AN SSSR. Mehanika zhidkosti I gaza, 1974, no. 4, pp. 187-190.
- 6. Ivanov V.V., Karaseva L.V. Izvestiya vuzov. Severo-Kavkazskij region. Tehnicheskie nauki, 2015, no. 1, pp.65-68.

- Denisixina D.M., Ivanova Yu.V., Mokrov V.V. Inzhenernyj vestnik Dona.
 2018, № 2. URL:
 ivdon.ru/uploads/article/pdf/IVD_183_denisikhina_ivanova_mokrov.pdf_eb27
 152529.pdf
- 8. Ivanov V.V., Karaseva L.V., Tikhomirov S.A., Ponomarenko A.S. Inženernyj vestnik Dona (Rus), №2. URL: ivdon.ru/ru/magazine/archive/N2y2017/4188/.
- 9. Sparrow E.M., Lin S.H. International J. Heat Mass Transfer. 1965, v.202, №1070. pp. 437 448.
- 10. Chambre P.L., Acrivos A. J.Appl. Phys., 1956, v.27, № 11. pp. 1322 –1328.
- 11. Sargsyan S.V. Nauchnoe obozrenie. 2015. № 16. pp. 68-71.
- 12.Chumakov Yu.S., Xrapunov E.F., Maly'x A.D. Nauchno-texnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politexnicheskogo universiteta. Fiziko-matematicheskie nauki. 2020. T. 13, № 3. pp. 108-118. DOI 10.18721/JPM.13308.
- 13. Abramkina D.V. Vestnik Dagestanskogo gosudarstvennogo texnicheskogo universiteta. Texnicheskie nauki. 2017. T. 44, № 3. pp. 136-145. DOI 10.21822/2073-6185-2017-44-3-136-145.
- 14. Abramkina D.V., Abramyan A.A., Shevchenko-E`nns E`.R. Vestnik Dagestanskogo gosudarstvennogo texnicheskogo universiteta. Texnicheskie nauki. 2018. T. 45, № 4. pp. 133-141. DOI 10.21822/2073-6185-2018-45-4-133-141.
- 15. Marshalova G.S., Suxoczkij A.B., Kunty`sh V.B. Inzhenerno-fizicheskij zhurnal. 2023. T. 96, № 4. pp. 1091-1105.

Дата поступления: 13.07.2025

Дата публикации: 25.08.2025